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Low-Temperature Expansion for Lattice Systems 
with Many Ground States 
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Low-temperature expansion for systems with many ground states is dis- 
cussed. It is pointed out that, in general, different ground states may yield 
different formal perturbation expansions, and that the right expansion of 
the free energy is provided by ground states called here dominant. 

KEY W O R D S :  Low-temperature expansion; many ground states; 
dominant ground states. 

Low-temperature expansion (LTE) has been used extensively in investigations 
of  magnetic systems and alloys. The LTE is harder to derive and to justify 
than the high-temperature expansion, which reflects the fact that low-tem- 
perature properties are more complicated and interesting than the properties 
at high temperature. Thus in the past mainly systems of especially simple 
structure were discussed, systems which are characterized by a high degree 
of symmetry (3) and small number of  ground states. The ground states are 
usually equivalent in the sense that they are related by symmetries of  the 
interaction. Ferromagnetic systems are of  this kind, and so are antiferro- 
magnetic systems on simple lattices. 

To investigate more realistic materials one has to introduce models with 
more complicated structure. (9,~~ The number of  ground states is often 
large, sometimes even infinite, and the ground states no longer all need to be 
equivalent (superlattice formation). Below we discuss two examples of such 
systems, the first one being the nearest neighbor antiferromagnet on a fcc 
lattice. This model has received considerable attention. (1-4,9-1~,14) Because of 
its rich structure and the lack of rigorous results, various authors differ in 
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the interpretation of the numerical material. We obtain rigorous results for 
stabilizations of this model. 

The basis of our work is provided by the recent theory of Pirogov and 
Sinai312) We strengthen slightly some of their results, which allows us to 
develop systematic perturbation theory around T = 0 and to answer the 
following question: If  the ground states are not equivalent, which one should 
be used in computing the low-temperature expansion ? This question is of 
some importance for numerical calculations since, as we demonstrate below, 
"na tu ra l "  choices, such as averaging over ground states (1,4) or using periodic 
boundary conditions, sometimes lead to wrong coefficients in the expansion. 

We discuss in some detail two examples. On the one hand our discussion 
illustrates the theorem, and on the other hand, it allows us to advance 
conjectures about some systems with an infinite number of ground states. 
We give the LTE for the thermodynamic functions only, though Pirogov and 
Sinai construct a phase diagram at low temperatures: the LTE of the phase 
diagram is much more involved, and it has not been proved that on some 
points of the phase diagram the number of phases is not larger than that g~ven 
by Pirogov and Sinai. 

We consider lattice systems with finite-range interactions. 

Exam pie 1. The nearest neighbor antiferromagnetic interaction H on a 
face-centered cubic (fcc) lattice is given by 

H = J ~" cra~ ~ 
n , n .  

where era is the spin-�89 variable at the point a of the lattice, and n.n. indicates 
sum over pairs a, b of nearest neighbors. Usually, one formulates this model 
in terms of alloy variables. <9,1~ 

Example  2. c5) The system is located on a simple cubic lattice. The 
interaction H contains nearest neighbor ferromagnetic interaction and next 
nearest neighbor antiferromagnetic interaction (Fig. 1): 

H=-J~ o'ao" b + K ~ o'ao'b, J , K > O  
n.n. n.n.n. 

Fig. I. ( ) Ferromagnetic coupling. (---) Antiferro- 
magnetic coupling. 
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The choice K = 4J yields an infinite number of ground states; see below. 
Let now H be any finite-range interaction of a lattice system. By a 

ground state of the system we will understand a configuration which is 
periodic and for which the energy % per lattice site is minimal. If  X is a local 
perturbation of a ground state Y, i.e., X is equal to Y outside of a finite set, 
then H(X[ Y) will denote its energy with respect to Y. Thus, in Example 1 

H ( X  I Y) = ~. [%(X)~b(X) -- oa(Y)%(Y)] 
n . n .  

the sum being finite since the expression in brackets is nonzero for a finite 
number of pairs (a, b) only. 

Let @ be the set of all the excitation energies: 

do = {H(X[ Y): any Y, Xlocal  perturbation of Y} 

d ~ = {0, El,  Ez,...), 0 < E1 < E2 < ... 

For a ground state Y let n~(Y, A) be the number of perturbations of Y in A 
with energy E~: 

~(Y, A) = Card{X: H ( X  l Y) = E~, X(a) ~ Y(a), a r A}. 

We now make the assumption that for any ground state Y 

H ( X  I Y) --~ oo if Card{X(a) # Y(a)) --~ oo (t) 

i.e., when Y is perturbed in large domains the excitation energy becomes 
large. This assumption is satisfied in systems satisfying the Peierls condition 
(cf. below), and also in Examples 1 and 2; it is obviously not satisfied by the 
one-dimensional Ising model in zero external field, or by systems with non- 
zero ground-state entropy. 

Under assumption (1) the g~(Y, A) has the following asymptotic behavior 
as ]A[--~ oo: ~(Y, A) is a sum of terms which depend on the shape of [A I 
and a polynomial in I AI. The coefficient of lA] in this polynomial, n~(Y), is 
called the multiplicity of  E~ in Y. 

If  X and Y are ground states, I will say that X dominates Y in order i 
if n~(X) > n~(I1), n / X ) =  nj(Y), j < i, and X dominates Y if either X 
dominates Y in a certain order or ns(X ) = nj(Y) for allj. The X is dominant 
if it dominates any ground state. We let 

nr = nr 

for any dominant X. 
A careful study of ground states and lowest excitations of the model of 

Example 1 is contained in Ref. 2. The system has six equivalent ground states 
which possess the translational symmetry of  the interaction, and an infinite 
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family of periodic ground states of lesser symmetry. The six ground states 
dominate the other ground states in order 3: 

nl = 1, n 2 = 4 ,  n a =  1 3 � 8 9  15�89 

whereas for a ground state Y of period p, i.e., for a ground state invariant 
under translations by pi, pj, pk are not invariant under translations by mi, 
mj, mk (Ira[ < p), 

n3(Y)  <<. 15�89 - l /p, p = 2, 3,... 

The multiplicities can be also obtained by expanding the partition 
function ZA Y of the system in A with Y boundary conditions: for low enough 
temperatures 

(1/]A[) logZA Y = no(Y, A)/3% + nl (Y ,  A)e -BE1 + n2(Y, A)e -~E2 + ... 

The multiplicities are the limits of the coefficients of this expansion as A 
becomes large: 

n,(Y) = lim n,(Y, A), i = 1, 2 .... 
_A_ ---~ o0 

The coefficients ni(per, A) defined in a similar way by imposing the periodic 
boundary condition will have no limit as A increases, unless the multiplicities 
defined by different ground states are equal. 

In the following theorem we assume that the system has a finite number 
of ground states and that it satisfies the Peierls condition of Refs. 6, 7, and 12 
and that therefore the Pirogov-Sinai theory applies. We refer to Ref. 8 for a 
formulation which is convenient in applications and we note that no system 
with a finite number of ground states is known for which the Peierls condition 
does not hold. The free energy of the theorem is the limit, as the volume tends 
to infinity, of the logarithm of the partition function in a finite volume divided 
by the number of lattice sites in the volume. 

Theorem.  (i) The free energy p(/3), /3 = 1/KT, has the following 
asymptotic expansion as T--+ 0: 

p(/3) ~= /3% + n l e -  B~I + n2e-BV.2 + ... + nke-BE~ + ... 

here % is the ground-state energy per lattice site. 
(ii) For low enough temperatures there are (on the Pirogov-Sinai phase 

diagram) as many pure phases as there are dominant ground states. 

Thus, for example, if n3(Y) < n3 and ns(Y) > n~ it is not ns(Y) which 
appears as the coefficient of exp -/3E5, but the smaller multiplicity ns. Also, 
the limit of finite-volume states with Y boundary conditions is not expected 
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to yield a pure phase, but to be a mixture of the phases defined by the 
dominant ground states. 

In case of  ferromagnetic systems all the ground states are equivalent 
and stronger results have been obtained. Consider, for example, the two- 
dimensional Ising model with nearest neighbor interactions J1, ,/2, 

In this case the excitation energies E~ are multiples of 2J~ and 2J2: 

E~ = k~2J~ + l~2J2 

where k~, l~ are positive integers. Thus 

exp-/3E~ = z~,z~ 

where zl = e x p -  2/3J1 and z2 = e x p -  2/~J2, and the infinite sum in (i) can 
be written as power series in zl and z2. It appears that the power series con- 
verges to p(/3) -/~E0 for sufficiently small zl and z2 and thus p(/3) - / 3 %  
extends to an analytic function in two complex variables, in some neighbor- 
hood of zero. In three dimensions one would obtain analytic function of  
three variables 

zl = exp -/3J1, zz = exp - 2/3J2, z3 = exp - 2/3J3 

Similar results hold for any ferromagnetic system, spin �89 and higher spin, 
the number of  variables being equal to the number of nonequivalent bondsJ TM 

No results of this type are known for general systems of the theorem. It 
would be of interest to know how to recover p(/3) knowing the excitation 
energies E~ and the multiplicities n~; is the series in (i) summable to p(/3)? 

We add a comment on the periodic boundary conditions. They are used 
to define the coefficients n~ in Ref. 3. As is not hard to see, they provide the 
right coefficients only in case the ground states have the same multiplicities, 
as in the case of equivalent ground states; otherwise the periodic boundary 
conditions will yield wrong coefficients. A similar remark refers to averaging 
over ground states, as done, for instance, in Refs. 1 and 4. 

Extending the theorem, we can also give a perturbation expansion for 
the phase diagram of the Pirogov-Sinai theory. Since its formulation is 
much more involved, we will present it on another occasion. 

I shall now illustrate the theorem by applying it to the Examples. I am 
especially interested here in using it to arrive at conjectures at what happens 
for those values of the parameters for which the number of  ground states is 
infinite. Since the theorem requires the number of  ground states to be finite, 
I introduce first perturbations reducing the number of  ground states. Let m 



716 J. Slawny 

be a positive integer and let us change the interaction by adding the ferro- 
magnetic interaction 

- M  ~" ~ ( a ~  + m~1 + ~,~ + me2 + ~,~ + me3), M >/ 0 

This perturbation (stabilization) eliminates the ground states not invariant 
under translation generated by rnel, me2, men. 

Example 1 (ed). The stabilized interaction is 

J ~  cra%-M~(aaaa+mez +aa~a+me2+ cr~Cra+ma) 
n,n. a 

It has approximately 3. (2m)! ground states. For any ground state X the 
excitation energies split under the perturbation as follows: E, splits into 
Eij(M), j = 1 ..... ks, 

E~j(M) = E~ + n~jM, ~j >1 0 

with 

/r 

n,(X) = n,XX) 
1 = 1  

where ~/~j(X) are M-independent for small enough M. Easy calculation 
yields kl = 1, k2 = 1 (no splitting of the first two energy levels), 

E~(M) = E~ + 2M, E2~(M) = E2 + 4M 

for each periodic ground state X. It follows that for small enough M the six 
ground states, and only those, are dominant, and, by the Theorem, determine 
the asymptotic expansion of p: 

P(fi, M) ~ fleo(M) + (s~=z nzse-a~lCm) + ( ~=z n2je-BE2/m) +"" 

As M--~ 0 the RMS here goes over into 

fleo + nle-Zg~ + n2e-~2 + ... 

where n, are the multiplicities of the six ground states. This differs from the 
expansion of Refs. 1 and 4, where n, are equal to an average of the multiplici- 
ties n~(X) over X. 

The same argument yields only six pure phases for any M > 0 in spite 
of the large number of ground states. We conjecture that this is the situation 
for M = 0, too. Using the reflection positivity property of the model, I have 
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shown that at M = 0 there are at least six equilibrium states. However, this 
does not prove that there is more than one invariant equilibrium state, i.e., 
that  there is a first-order phase transition at low temperatures. 

Example 2 (ed) .  For K < 4J there are two equivalent ground states 
E, F: Ea = + 1 all a, and F~ = - 1 all a. Correspondingly, at low temperature 
there are two pure phases. For K > 4J there are six ground states, all equiv- 
alent, and six pure phases at low temperatures; each of the six ground states 
has period 2. For K = 4J, apart from the eight ground states above, there is 
an infinite family of ground states of lesser symmetry each obtained from E 
(or F) by flipping spins in planes perpendicular to one of the coordinate axes.(5~ 
States E and F are equivalent and, as can be shown, dominate any other 
ground state in order 1. Thus I expect to have only two phases at low tem- 
perature and the asymptotic expansion given by E (and F). Again as in the 
first example exactly such a picture obtains if long-range stabilization is 
introduced. 
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